197 research outputs found

    Two patients walk into a clinic...a genomics perspective on the future of schizophrenia

    Get PDF
    Progress is being made in schizophrenia genomics, suggesting that this complex brain disorder involves rare, moderate to high-risk mutations and the cumulative impact of small genetic effects, coupled with environmental factors. The genetic heterogeneity underlying schizophrenia and the overlap with other neurodevelopmental disorders suggest that it will not continue to be viewed as a single disease. This has radical implications for clinical practice, as diagnosis and treatment will be guided by molecular etiology rather than clinical diagnostic criteria

    Mutation of Semaphorin-6A Disrupts Limbic and Cortical Connectivity and Models Neurodevelopmental Psychopathology

    Get PDF
    Psychiatric disorders such as schizophrenia and autism are characterised by cellular disorganisation and dysconnectivity across the brain and can be caused by mutations in genes that control neurodevelopmental processes. To examine how neurodevelopmental defects can affect brain function and behaviour, we have comprehensively investigated the consequences of mutation of one such gene, Semaphorin-6A, on cellular organisation, axonal projection patterns, behaviour and physiology in mice. These analyses reveal a spectrum of widespread but subtle anatomical defects in Sema6A mutants, notably in limbic and cortical cellular organisation, lamination and connectivity. These mutants display concomitant alterations in the electroencephalogram and hyper-exploratory behaviour, which are characteristic of models of psychosis and reversible by the antipsychotic clozapine. They also show altered social interaction and deficits in object recognition and working memory. Mice with mutations in Sema6A or the interacting genes may thus represent a highly informative model for how neurodevelopmental defects can lead to anatomical dysconnectivity, resulting, either directly or through reactive mechanisms, in dysfunction at the level of neuronal networks with associated behavioural phenotypes of relevance to psychiatric disorders. The biological data presented here also make these genes plausible candidates to explain human linkage findings for schizophrenia and autism

    Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 genomes data

    Get PDF
    Next-generation RNA sequencing (RNA-seq) maps and analyzes transcriptomes and generates data on sequence variation in expressed genes. There are few reported studies on analysis strategies to maximize the yield of quality RNA-seq SNP data. We evaluated the performance of different SNP-calling methods following alignment to both genome and transcriptome by applying them to RNA-seq data from a HapMap lymphoblastoid cell line sample and comparing results with sequence variation data from 1000 Genomes. We determined that the best method to achieve high specificity and sensitivity, and greatest number of SNP calls, is to remove duplicate sequence reads after alignment to the genome and to call SNPs using SAMtools. The accuracy of SNP calls is dependent on sequence coverage available. In terms of specificity, 89% of RNA-seq SNPs calls were true variants where coverage is >10X. In terms of sensitivity, at >10X coverage 92% of all expected SNPs in expressed exons could be detected. Overall, the results indicate that RNA-seq SNP data are a very useful by-product of sequence-based transcriptome analysis. If RNA-seq is applied to disease tissue samples and assuming that genes carrying mutations relevant to disease biology are being expressed, a very high proportion of these mutations can be detected

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia

    Get PDF
    We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology
    corecore